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Closed-cavity laminar flows at moderate Reynolds numbers 
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The paradox reported by Brady & Acrivos (1981) of the non-existence of similarity 
solutions in the Reynolds-number range 10.25 < R < 147 for the flow in a tube with 
an accelerated surface velocity is resolved. It is shown that the source of the difficulty 
lies in the assumption that the tube is infinite in extent. For a finite tube, it is demon- 
strated that the presence of the closed end, even though far removed from the origin, 
affects in a fundamental way the structure of the flow throughout the entire tube. The 
change in the flow structure that occurs in a finite tube at R = 10.25 is caused by the 
fluid which is returning from the downstream end; it is shown further that the problem 
of determining the motion in a long finite tube is equivalent to that of selecting the 
initial condition for the boundary-layer equations that properly takes into account 
the presence of the reverse flow. By applying a method originally developed by 
Klemp & Acrivos (1976) for selecting this condition, the flow in a finite tube is deter- 
mined numerically for Reynolds numbers up to 70. I n  addition, i t  is shown that the 
same change in structure brought about by the returning fluid occurs in a finite two- 
dimensional channel a t  R = 57, even though the corresponding similarity solutions 
exist for all values of R. The results suggest that similarity solutions should be viewed 
with caution because they may not represent a real flow once a critical Reynolds 
number is exceeded. 

1. Introduction 
I n  a previous paper (Brady & Acrivos 1981), hereinafter referred to as I, we presented 

an exact solution to the steady Navier-Stokes equations for the flow in a semi-infinite 
channel or tube which is driven by an accelerating surface velocity (cf. figure 1 in I).  
For the two-dimensional cas3, a well-behaved set of solutions that evolve continuously 
with the Reynolds number R was found to exist for all 0 6 R < GO. This is in contrast 
to the corresponding axisymmetric case without swirl where no solutions exist within 
the range 10.25 < R < 147. (As discussed in I, the axisymmetric solutions with swirl 
do not evolve from R = 0, nor do they bifurcate from those without swirl at any finite 
value of R; hence they will not be considered in this paper.) The presence of this gap in 
the axisymmetric solutions raises an important question regarding the structure of the 
flow in a ‘real tube’ as the Reynolds number is increased from zero to 10.25, and then 
beyond. One of the aims of this paper is to answer this question. 

We shall show in what follows that the source of our difficulties lies in the assumption 
that the tube is semi-infinite in extent. Of course, in any real physical problem, the 
tube’s length must be finite, and we shall see that the existence of a closed end, even 
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FIGURE 1. Region of closed streamline flow, adjacent t o  a flat plat,e, whose surface velocity 
moves in a direction opposite to that of the free stream; R, = UE/v (after Klemp & Acrivos 1976). 

though it may be far removed from the origin, affects, in a very fundamental way, the 
structure of the flow throughout the entire tube if R is sufficiently large. 

At first, the sudden disappearance of a similarity solution for R > 10-25 is puzzling 
because, even in a finite tube, one would expect such a solution to apply over most of 
the length of a very long tube. And, in fact, we shall show that the similarity solution 
does indeed accurately describe the flow in a finite tube over most of its length provided 
12 is small. As R is increased, however, we shall see that the range of validity of the 
similarity solution continuously decreases, until a t  R = 10.25 it has shrunk to zero. 
l n  addition, we shall show that, a t  this critical value of R, the flow in a finite tube 
undergoes a fundamental change in structure which no longer bears any resemblance 
to that given by the similarity solution. 

This change in the flow pattern which occurs in a finite tube is brought about by the 
fluid returning from the downstream end. We recall from the similarity solution (cf. 
equation (2.3) in I) that the longitudinal velocity of this returning fluid, being pro- 
portional to  the streamwise co-ordinate x, must vanish by the time it reaches the 
origin. In  a closed tube, however, if the Reynolds number becomes too large, the 
strength of the viscous forces, which play the dominant role in slowing down the 
returning fluid, will be insufficient to overcome the momentum of this fluid before it 
reaches the origin x = 0. Of course, in a closed region of flow, the pressure is simply set 
up so as to conserve mass and cannot act to retard the returning fluid. Hence, once a 
criticalvalueofRisexceeded, this returning fluid will no longer have a vanishingly small 
axial velocity as x + 0. Rather, i t  will 'collide' with its mirror image from negative x, 
forming, as we shall show, an inviscid region of flow near x = 0 in which the similarity 
solution no longer applies. I n  fact, there is a close analogy between the present problem 
and that studied by Klemp & Acrivos (1972, 1976) for the high-Reynolds-number 
laminar flow over a finite-length flat plate whose surface is moving in a direction 
opposite to that of the free stream. To aid in our presentation, we shall first review the 
principal features of the solution developed by these authors. 

As illustrated in figure 1, the negative velocity of the plate's surface sets up a region 
of closed streamline flow adjacent to the plate that remains confined within the 
boundary layer if the Reynolds number is sufficiently large. Near the leading edge of 
the plate, a similarity transformation reduces the boundary-layer equations to the 
Blasius equation, and, in a manner analogous to  the results of I ,  solutions to this 
equation cease to exist once the ratio of the surface speed to that of the free stream, 
called h by Klemp & Acrivos, reaches 0-3541. (The analogy is actually quite strong 
because, by scaling x with R in the similarity solution of I (cf. (2.3) in I), the Reynolds 
number can be removed from the governing equation and transferred to  one of the 
boundary conditions nt the moving surface.) Furthermore, Klemp Rr Arrivos ( 1  972) 
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found that the similarity solution accurately described the flow over most of the 
length of the plate provided h was less than 0.2, but that, as h -+ 0.3541, the region of 
validity of this similarity solution had shrunk to a single point. These authors then 
postulated that, a t  this critical value of A, an inviscid region of flow forms a t  the 
leading edge of the plate whosc. lateral and vertical dimensions are O(R,j), where 
R ,  = Ul /u  is the Reynolds number in their problem. I n  this inviscid region, the fluid 
dragged along by the moving surface of the plate collides with the main stream and is 
turned around to flow back downstream, still, however, remaining within an O(R,h) 
distance of the surface. Thus, the boundary-layer equations still govern the flow near 
the plate, but the similarity solution no longer describes the motion near the leading 
edge. I n  this way, Klemp & Acrivos (1976) were able to develop solutions for all 
values of A. 

We shall now show that, by postulating the presence near x = 0 of a collision region 
analogous to that  described by Klemp & Acrivos ( 1  97ci), solutions for the acceIerating- 
tube-flow problem can be obtained for values of R in excess of 10.25. I n  9 2 we shall 
reformulate the problem described in I for a tube of finite length, and shall show how to 
take into account the presence of an invis'cid collision region when setting up the boun- 
dary condition at x = 0. In  3 3 we shall present the resulting numerical solutions to the 
appropriate equations for the accelerating-tube-flow problem for Reynolds numbers 
up to  70. Since this concept of allowing for the presence of a collision region a t  the 
origin is not restricted to the present problem (nor to that considered by Klemp & 
Acrivos), we shall extend our analysis in 9 4 to other types of closed-cavity flows. I n  that 
section we shall also discuss the relation between similarity solutions and the real flows 
that they are meant to represent, and shall offer the suggestion that, in boundary- 
layer problems with reverse flow, the existence of an inviscid collision region may be 
the rule rather than the exception. 

Thus, the aim of this paper is much broader than merely providing numerical 
solutions to a specific problem in that it also contains the application of a mathe- 
matically consistent scheme for integrating the boundary-layer equations in the 
presence of reverse flow that, although available in the literature, does not appear to 
have received much attention. Moreover, since it is possible here to make a comparison 
between a 'real' flow and that given by a similarity solution, we are able to examine 
the important question of the relationship between similarity solutions and the real 
flows that they are meant to represent, a relationship which, as we shall see, is not 
necessarily a simple one. 

2. The flow in a tube of finite length 
I n  reformulating the problem of I for a finite-length closed tube or cavity, we shall 

not specify any detailed boundary conditions a t  the end of the tube, but simply 
require that the tube be closed. We shall denote the length of the cavity by L and its 
radius by a ,  with a / L  < 1 for long slender cavities. We shall denote the cavity surface 
by r = ah(x), where h(x) is an O( 1) function of x which varies on a length scale L. At the 
surface, the axial velocity will be u = E r  (cf. figure 1 in I),  while t'he radial component 
v will satisfy the kinematic conditions of zero normal flux across the surface; thus 
v = uah, = Eaxh,, where h, = dh/dx (see figure 2) .  Also, the centre line will be a line of 
symmetry, iiu/ar = v = 0 at  r = 0, and the flow is to be antisymmetric about the origin. 
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FIGURE 2. Schematic diagram for the flow in a long slender finite cavity 
with an accelerating surface velocity. 

Since the problem now contains two length scales, L and a, we have a choice as to 
how to scale the equations of motion. The natural choice is to scale r and v with a and 
Xa respectively, and the axial co-ordinate and velocity with L and EL. If the pressure 
is scaled with ,LLE(L/U)~,  then the equations of motion in dimensionless form become, 
for long slender cavities, 

where R = pEa2/p is the Reynolds number. The boundary conditions for (2.1) are 

u = x, v = xh5 a t  Y =  h(x); (2.3a, 6) 

- - = v = O  a t  r = 0 .  (2.4a, 6) 
ar 

As a / L  -+ 0,  (2.1) and the equation of continuity are seen to  be the axisymmetric 
forms of the boundary-layer equations, with the exception that the transverse co-ordi- 
nate r is O( 1) and the Reynolds number appears as a parameter in the equations. Here, 
a / L  is the small parameter rather than the reciprocal of the Reynolds number as is 
normally the case in boundary-layer theory. Furthermore, we should note that, since 
the characteristic axial velocity is O(EL) ,  neither R nor the equations contain L 
explicitly; thus, so long as ( a / L )  4 1, the absolute scale of L is immaterial. 

If we assume that (2.1)-(2.4) apply for all x, it is clear that the similarity solution 
u = xf’(r)/r, developed in I, will represent the first term in a Taylor-series expansion 
of u about the origin for any analytic function h(x). Hence we would expect the 
similarity solution to be valid near x = 0,  in much the same way that the Blasius 
equation was expected to describe the flow near the leading edge of the flat plate 
problem considered by Klemp & Acrivos (1976). It should be obvious, however, that 

au 
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FIOURE 3. Structure of the longitudinal velocity profile in the overlap domain between the inner 
and outer regions when I/ , ,  = 4. (Note that ( a ~ / a l ] ) ~ ~ , ~  3 0.) 

(2.1) is not necessarily valid within an O(afL) region near x = 0 because, when x is 
small, it should be scaled with a as opposed to L. I n  other words, (2.1) should be 
viewed as applying to  the flow in an ‘outer’ region whose solution must match with the 
solution to an equation that applies near the origin. We see then, that  the proper initial 
condition for the boundary-layer equation (2.1) is one of matching as x 3 0 with a 
solution which is valid in an ‘inner’ region. 

The flow in this inner region can have one of two structures depending on the 
magnitude of the returning velocity. If this velocity vanishes as x -+ 0, then (2.1) and 
the similarity solution will continue to apply up to  x = 0, i.e. the inner region will be 
absent, and u = 0 is the appropriate initial condition. If, however, the dimensionless 
velocity of the returning fluid does not vanish, but instead remains O(1) -i.e. O ( E L )  
in dimensional units - then the effective Reynolds number within this inner region will 
be ( L f a )  R, which, for any non-zero R, is arbitrarily large as a f L  -+ 0. Consequently, 
in this later case, the inner region will be inviscid, and the form of u in (2.1) as x --f 0 
must be chosen to be consistent with the motion in this inviscid inner (or collision) 
region. We should also note that the two different inner regions will produce cavity 
flows with a fundamentally different mathematical structure as x -+ 0. 

I n  general, the determination of the complete flow field in the inviscid collision 
region will require considerable effort. Fortunately, however, this is not necessary 
because the only role of this region is to supply an initial condition for the boundary- 
layer equation (2.1); a condition that can be obtained quite simply from matching. 
Specifically, in an axisymnietric inviscid flow, the vorticity divided by T is constant 
along streamlines and thus 

where F($) = wfr ,  w being the vorticity, 7 = r2, Z = xL/a ,  and $is the stream function, 
i.e. u = 2 a$/a7 and v = - q-8 a$/aZ. Since v is ofa  different order of magnitude in the 
inner and outer regions, matching between the two regions requires that a$/aZ --f 0 as 
2 3 co, i.e. that all st,reamlines must become parallel to  the axis. If now we consider a 
point yo a t  which u = 0,  then from (2.5) we see that, as Z + 00, u must be antisymmetric 
about yo, and, since mass must be conserved at  any cross-section, yo < 4. 
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Although this matching between the inner and outer regions does not determine a 
unique initial condition, the choice 7o = 3 leads to the most realistic initial velocity 
profile. As illustrated in figure 3, when qo = $, the fluid that returns along the axis is 
deflected up to the surface and then flows back downstream just beneath the wall of 
the cavity. On the other hand, if q,, were less than 4, this same fluid would return 
downstream at  2?jo, thereby creating a region of stagnant fluid adjacent to the surface, 
which is rather unphysical. Hence, we shall assume that qo = Q and that the axial 
velocity a t  the edge of the inner region has the form depicted in figure 3. (Incidentally, 
numerical solutions computed with T,, < $ were essentially identical to  those with 
?/o = 4, except, for q > vo, for the first one or two grid points near x = 0.) Thus, if we 
let u denote the axial component of velocity for 0 < q < 4 in the overlap domain 
between the inner and outer regions, then the solution within the inviscid collision 
region requires that the initial condition for (2.1) be 

u(7) = --u(l-v),  0 < 7 < 4, a t  x = 0. (2.6) 

Equation (2.6) expresses the fact that the fluid which is returning from downstream, 
u < 0, 0 < 7 < 8,  collides and reappears u > 0, $ < q < 1, in such a way so that w / r  is 
conserved along streamlines. This conservation of vorticity allows us to understand 
the appearance of a collision region in a different way. The fluid returning from the 
end of the cavity will, in general, have vorticity which can only be lost through the 
action of viscosity, i.e. by diffusion. As the Reynolds number increases, the rate of 
diffusion of vorticity decreases, and, once a critical Reynolds number is exceeded, the 
returning fluid will not be able to dissipate its vorticity by the time it  has reached the 
origin. 

Having shown how the structure of the flow near the origin in a tube of finite length 
changes with Reynolds number, we can now use this analysis to  construct solutions 
for R exceeding 10.25. I n  place of the similarity solution, (2.6) will serve as the initial 
condition for the boundary-layer equations when R is greater than 10.25. To deter- 
mine u a t  x = 0 for 0 < 7 < &, we can extrapolate the velocity in the outer region 
backwards as x + 0. I n  this way the returning fluid will determine the initial condition 
and hence affect the motion throughout the entire cavity. 

3. Numerical solution for the accelerating cavity flow 
To obtain a solution for all values of the Reynolds number we need to solve for the 

flow in a finite cavity, which, unfortunately, can only be done numerically. This 
requires that we specify completely the geometry of the cavity. As we shall show at the 
end of this section, all slowly varying cavity shapes will give rise to a collision region a t  
R = 10.25, but the shape h(x) = 1 - x2, 0 < x < 1 ,  where x has been scaled with L as in 
( 2 .  l),  will be used for the numerical calculations. It is also convenient to transform the 
domain into a square by defining 7 = r2 /h2(x )  and rewriting (2.1), along with the 
equation of continuity, as 

Rh2 

av au aU 
- + h- - 27h,- = 0, 
a7 ax 87 
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where V = 274v and the time derivative of u has been retained in the inertial terms. The 
boundary conditions, which are now located a t  fixed positions, are 

u = x, V = 2xh, at  7 = 1, (3.3) 

The motivation for selecting this form of h(x) comes from the problem oydrop breakup 
(to be discussed in a subsequent paper (Brady & Acrivos 1982)) where flows inside 
cavities of this shape are required. This and similar choices for h, however, also help 
to  simplify the numerical analysis because these shapes remain slender everywhere up 
to  the end of the cavity, thereby enabling us to focus attention on the flow near x = 0. 
(Any shape which abruptly closes a t  x = 1, such as h(z) = 1 ,  0 < x < 1 and h(1) = 0, 
would give rise to  a 'singular' region near the end within which the fluid would be 
turned around.) In  fact, from (3.1) we see that, when h = 1 - x2,  the effective Reynolds 
number Rh2(x) varies over the length of the cavity and vanishes a t  x = 1. Hence the 
flow near the end will be required to conform to that given by the zero-Reynolds- 
number solution, i.e. 

(3.5) 24 = 2 4 7  - g ) ,  

dP h 2 - = 8 x  as x - f  1 .  dx 

We should also note that the zero-Reynolds-number solution expressed in terms of 7 
is of the similarity form - u/x = a function of the transverse co-ordinate - over the 
entire length of the cavity. It is unusual of course to specify the downstream boundary 
condition for a parabolic equation, but it should be noted that, since the returning 
velocity a t  x = 0 is apriori unknown, the initial condition given by (2.6) is insufficient 
by itself to determine uniquely the flow throughout the cavity. I n  effect, (2 .6)  serves as 
a consistency condition between the collision region and the motion in the remainder 
of the cavity. On the other hand, (3.5) determines how the fluid is to return from the 
downstream end, and therefore the problem can be viewed as how to choose the initial 
condition, given R and h(x), so that the fluid returning from downstream satisfies ( 3 . 5 ) .  

To obtain the numerical, finite-difference, solution for the flow inside the cavity, 
(3.1) was solved dynamically in time until a steady state was achieved throughout the 
entire flow field. Space-centred differences were used in both the 7- and x-directions, 
and (3.1) was stepped forward in time explicitly in the x-direction but implicitly in the 
7-direction. The relatively large number of grid points needed in the 7-direction, 
coupled with the fact that solutions for a wide range of R were computed, would have 
placed too severe a restriction on the time-step size if a fully explicit scheme had been 
used. The implicit formulation in 7 leads to a tri-diagonal system of linear equations, 
which can be solved quickly, thereby achieving a net gain in computational speed. 

I n  operator notation the finite-difference equations are 
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Here, the difference operators are defined by 
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(3.9) 

J,&t) = 

S,4(0 = (2At)-1{4(6+A6) - $%--At)}, 
&m = {4(6 + A t )  - + 9(6- At)} ,  

{4(t  + A t )  - M I >  

- 
45 = 4{4(6+ A t )  + Q(t)>, 

where Q is the appropriate dependent variable and E the independent variable. Also, 
since we are only interested in steady solutions, the function h2(x)  multiplying the time 
derivative can be set equal to unity, which enhances the stability of the system without 
affecting the final solution. This is equivalent to  replacing At in (3.7) by hzAt and 
introduces an error into the effective time-step size near the end, which, since 
the Reynolds number is essentially zero there, has little effect on the dynamical 
calculations. 

To complete the numerical scheme, we must devise a method for computing the 
pressure, which is unknown and must be found as part of the solution. I n  closed-cavity 
flow, the pressure is set up to conserve mass, and hence the zero-flux requirement 

(3.10) 
J O  

will furnish us with the additional equation needed to  find dp/dx. Since the pressure 
gradient is unknown a t  t + At (with, as mentioned above, the term h2 multiplying the 
time derivative set equal to unity), we first calculate from the finite-difference equation 
(3.7) 

which will not, in general, satisfy (3.10); thus 

which when subtracted from a determines u at t + At. Hence, the pressure gradient 
evolves in time in such a way that the net flux of fluid across each axial station remains 
zero. 

At time t = 0 the flow field was set equal t o  that given either by the zero-Reynolds- 
number solution, or by a previously computed solution at a different R. Because of the 
implicit representation in 7, all the U-values in a given column had to be determined 
simultaneously; hence, a time step was taken by sweeping through the flow field in 
the positive x-direction and solving a t  each value of x a tri-diagonal matrix for u. The 
initial condition (2.6) was used a t  x = 0 while, a t  x = 1 )  the velocity field u was required 
to satisfy (3.5).  (We should note that (3.5) gives a valid description of the flow near 
x = 1 provided Ax is sufficiently small so that the local Reynolds number RAx is also 
small.) At the end of each time step a new initial condition at x = 0 &as computed in 
the manner described below, and the procedure was repeated until a steady state was 
attained throughout the entire domain. 

To determine the initial condition in x a t  the beginning of each time step, we started 
at 7 = 0 and simply extrapolated u backwards from the next two grid points down- 
stream, increasing 7 until 7 = &. Although a linear extrapolation produced accurate 
results for most of the calculations, some care was needed in determining the proper 
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form for the extrapolation. Since, at x = 0, u(7 = 0)  was generally non-zero, and since 
the solution in the inviscid collision region requires that u(7 = 1) = -u(7 = 0)) the 
velocity a t  x = 0 was discontinuous at 7 = 1 (cf. (3.3), according to  which u(7 = 1) = 0). 
This discontinuity in turn implies that the boundary-layer equations will have a 
singularity at x = 0 analogous to  that occurring in the entry flew in a pipe (Van Dyke 
1970). As a result, the expression for u as x -+ 0 takes on the form u - u,(y) +xh~ , (q ) ,  
which in turn implies that both dp/dx and the inertial terms will become O(x-4) as 
x -+ 0. We see then, that  the proper form for the extrapolation should be linear in sit 
rather than in x .  

I n  order for both the flow field and the initial condition to  evolve together in time, 
a t  the beginning of each time step the velocity for 7 6 4 was extrapolated backwards 
to determine the initial condition. If all the extrapolated velocities were zero, then 
the initial condition is u = 0 for all 7, which simply corresponds to the similarity 
solution a t  x = 0. (A positive u could result if the mesh size was too large, and in this 
case u was set equal to  zero.) Thus, by extrapolation, both the structure of the collision 
region, and the transition from the similarity solution to the inviscid collision region 
evolved in time. This proved to be very convenient and is actually quite important 
because, although it is clear from the previous discussion that an inviscid collision 
region must be present when R > 10.25, there is no reason why the collision region 
cannot appear when R is less than 10.25. Rather than having to make this decision 
a t  the outset, it was made dynamically in time so as to be completely consistent with 
the equations of motion. 

To properly resolve the singularity in (3.1) at x = 0 a small mesh size is needed in 
both the 7- and x-directions. Rather than using an excessively large grid, the axial 
co-ordinate was exponentially stretched by defining 

ea2- 1 
ea-  1 

x=- (0 < 2 6 I ) ,  

where a is a positive constant; in so doing, a large number of grid points were placed 
near the origin. With a = 3 and 2G grid points for x we could reduce Ax to 6.29 x 10-3 at 
x = 0 without losing accuracy near x = 1 (Ax  = 0.126 a t  x = 1) .  Very good accuracy 
was achieved up to a Reynolds number of 70-the largest for which a solution was 
computed-by using 91 grid points in the 7-direction. A time-step size was used which 
satisfied the linear stability requirement in the axial direction, i.e. At < Ax/u  2: Ax, 
which, even for this nonlinear problem, was found to be extremely accurate. The 
calculations were terminated when the maximum absolute error in the pressure 
gradient between time steps was less than 9 x  lo-' everywhere. (The pressure was 
found to  converge more slowly than the velocity field.) Depending on the initial flow, 
this required a dimensionless time of between 3 and 5. 

The results of the numerical computations for the flow in a finite closed cavity are 
shown in figure 4, where the pressure gradient h2dp/dx is plotted as a function of x for 
various values of the Reynolds number. The dashed curves shown in figure 4 represent 
the pressure distributions computed from the similarity solutions a t  R = 1, 5 and 
10.25 (cf. I ) .  The form of the pressure gradients show very clearly that the similarity 
solution represents the flow in a finite cavity quite accurately (the velocity profiles are 
also in close agreement) when the Reynolds number is less than unity. As R increases, 
however, the flow predicted by the similarity solution and that in a finite tube coincide 
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1 1 I I R = 7 0  I 

dP RhZ - 
dx 

I I I 1 
0 0.2 0.4 0.6 0 4 1 .o 

FIGURE 4. Pressure-gradient profiles for the flow in a finite axisymmetric cavity (h(;c) = 1 -r2) 
at R = 0, 1 ,  10.25, 20, 35, 50, 70. The dashed curves correspond to  the pressure-gradient profiles 
predicted by the similarity solution at R = 1 ,  5, 10.25. 
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0.4 
O Q R  Q 10.25 

0.2 

-0.4 0 0.4 
0.0 

U 

FIGURE 5. The longitudinal-velocity profiles at x = 0, i.e. the initial conditions, for the flow in a 
finite cavity ( h ( z )  = l-xz)).  Note t'hat the velocity at 7 = 1 was set equal t o  zero to take into 
account the presencc of the boundary layer at the surface within tjhe collision region. This is not 
necessary but gives slightly more accurate results near .T = 0. 

over a smaller and smaller region near the origin; until, a t  R = 10.25, the two flows 
agree only a t  x = 0. Beyond this critical Reynolds number, the returning fluid 
influences the flow everywhere, and a collision region forms at  the origin. The onset 
of the collision region at  R = 10.25 can also be seen in figure 5, where the axial velocity 
a t  x = 0, i.e. the initial condition, is shown as a function of the Reynolds number. 
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FIGURE 6. Streamline pattern for R = 10.25, which is typical of t,hose 
for 0 < < 10.25. 

r 

0.2 - 

Y 

FIGURE 7. Streamline pattern for R = 35, which is typical of those for R > 10.25. 

Figures 6 and 7 show how the &earnline pattern evolves as the structure of the flow 
changes with R. 

Thus, we have shown that a collision region does indeed appear a t  R = 10-25, whose 
existence enabled us to extend our solutions beyond this critical Reynolds number. 
Although the mathematical structure of the flow changes fundamentally at R = 10.26, 
the actual evolution of the flow with Reynolds number is smooth and continuous (as far 
as can be deduced from the numerical calculations) as is to be expected for any real 
physical flow. 

The numerical scheme outlined above was found to be computationally efficient and 
accurate, even to  the point of resolving the singularity in (3.1) at x = 0. To insure the 
accuracy of the results, various checks were made on the computations, such as 
changing the mesh size, as well as using both second-order upwind differences in the 
x-direction (see Roache 1972) and a fully explicit scheme in time. In fact, a grid size as 
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small as 1 1  x i 1 without the exponential stretch gave results within I0 yo of those 
computed with the 26 x 91 exponentially stretched grid throughout the entire domain, 
except a t  x = 0, where the extrapolated initial conditions were very poor. Surprisingly, 
when an intermediate grid size of 26 x 26 without an exponential stretch was used, the 
accuracy of the solution near the origin actually decreased. This decrease and then 
increase in accuracy as the mesh is made finer is a direct result of the singularity in 
(3 .1)  at  the origin - a very coarse mesh does not notice the singularity, a finer mesh 
begins to experience its presence but is too coarse to resolve it, and the finest mesh 
used had no difficulty in resolving the singularity. At the same time, however, second- 
order upwind differences gave accurate results with the 26 x 26 grid, but not with the 
finer 26 x 91 exponentially stretched grid because, when a very fine mesh was used, the 
artificial viscosity introduced by the upwind differencing tended to smooth out and 
incorrectly represent the pressure gradient. Solutions for Reynolds numbers in excess 
of 70 were not computed because i t  became increasingly more difficult and time- 
consuming to reach a steady state. At large Reynolds numbers, the flow over most of 
the length of the cavity is effectively inviscid, and the numerical scheme we have used 
is not well suited for calculating the time evolution of an  inviscid flow. 

As a final part of this section, we would like to  show that the appearance of an 
inviscid collision region a t  R = 10.25 is a fundamental property of the accelerating 
tube-flow problem and is not dependent on the particular geometry we have selected. 
For this purpose, a shape of h(x) = 1 ,  0 < x < 1, and h(1) = 0 was chosen which 
rendered the effective Reynolds number constant over the length of the cavity. For 
this shape, however, the sudden appearance of a closed end results in a ‘singular’ 
region a t  x = 1 in which the fluid carried along by the moving surface is turned around. 
It is not difficult to see that the flow in this singular region is inviscid (when R is not 
identically zero), and that its structure is identical to  that in the inviscid collision 
region (cf. $ 2 ) .  Thus, there are collision regions a t  both ends of the cavity, and, 
accordingly, the proper downstream condition for (3.1) is (2 .6)  rather than (3.5). From 
a knowledge of the velocity profile for q 2 4, we can compute the profile for q 6 +, and 
hence determine how the fluid is to return from the downstream end. Using (2.6) as the 
condition a t  both x = 0 and x = 1 is sufficient to uniquely determine the flow through- 
out the entire cavity, whereas using (2.6) a t  x = 0 alone without a downstream 
condition is not. 

The numerical computations were performed in the same manner as before, with 
the exception that both the initial and downstream conditions were found by extra- 
polation. Since there are now two collision regions, the x-co-ordinate was not exponen- 
tially stretched, as this would have removed grid points from the downstream end. 
Also, a grid size of 26 x 26 and second-order upwind differences were used in the axial 
direction because they were found to  give sufficiently accurate results with less com- 
puting time. No attempt was made to resolve the square-root singularities which are 
present a t  both ends, as this would have required excessive computational effort. 
Even so, the time required to reach a steady state w s considerably longer than that 
previously needed, because both the initial and downstream conditions had to be 
adjusted in time. The results for the pressure distribution are shown in figure 8, where 
it is seen that, although the pressure distribution is quite different from that of the 
previous example, the onset of the collision region still occurs at R = 10.25. Perhaps 
not siirprisingly, sinre h(r) = 1 ,  the similarity solution represents the flow over a 
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FIGURE 8. Pressure-gradient profiles for the flow in a finite axisymmetric cavity with a sudden 
end (h(z)  = 1,0 < r < 1 ,  h(1)  = 0) at R = 1 ,  5, 10.25, 20, 30,40. The dashed curves correspond 
to the similarity solution pressure gradients at R = 1 ,  5, 10.26. 

greater portion of the cavity than was the case when h = 1 -xz, but this region of 
common validity of the two solutions still shrinks to zero as R + 10.25. 

4. Extension to other flows 
We have seen that the flow in a finite-length axisymmetric cavity which is being 

driven by an accelerating surface velocity undergoes a fundamental change in structure 
a t  a critical value of the Reynolds number. As we described in 5 1, this transition can 
be given a simple physical explanation in terms of the effects of the returning fluid, and 
the results we have obtained are consistent with this explanation and with the inviscid 
collision region analysis. Furthermore, the values of R at  which the collision region 
first appears and where the similarity solution ceases to exist coincide. (The same was 
true for the moving-wall boundary-layer problem with reverse flow studied by Klemp & 
Acrivos (1976).) This may be an accident, however, because there does not seem to be 
any a priori reason why the appearance of a collision region at  x = 0 should be linked 
to the non-existence of a similarity solution. Indeed, as the following example serves 
to indicate, the appearance of a collision region is simply due to the presence of fluid 
which is returning from downstream. 

Consider then the flow in a finite-length, two-dimensional channel - the two- 
dimensional analogue of the problem we have just considered in $ 3 .  Although a 
similarity solution to this problem exists for all R (see I), it would indeed be very 
surprising if the flow in a finite channel were to differ in a fundamental way from that 
in a finite axisymmetric tube. Thus, using the same shape, h(x) = 1 -xZ, we repeated 
the calculations of 3 3 for the two-dimensional problem, and the results for the pressure 
gradient are shown in figure 9. Since upwind differences were used and the x-co-ordinate 
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FIGURE 9. Pressure-gradient profiles for the flow in a finite two-dimensional cavity (h(s) = 1 - 22) 
at R = 0, 10, 30, 50, 60, 70, 80. The dashed curves are the similarity solution pressure gradients 
at, R = 1, 10, 30, 57.  
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FIGURE 10. The longitudinal-velocity profiles at x = 0, i.e. the initial conditions, for 
the flow in a finite two-dimensional cavity (h  = 1 -x2). (See note for figure 5. )  

was not exponentially stretched, the singularity a t  the origin does not appear. The 
computed axial velocity profiles at  x = 0, shown in figure 10, along with the pressure 
distributions, clearly demonstrate that an inviscid collision region forms at a critical 
Reynolds number, even though a similarity solution exists for all R. The exact value 
of the critical Reynolds number may, of course, depend on t’he cavity shape; however, 
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FIGURE 11. Pressure-gradient profiles for the flow in a finite two-dimensional cavity with a 
sudden end ( h ( x )  = 1, 0 < z < 1, h(1) = 0) at R = 1, 10, 30, 50, 60, 70, 80. The dashed curves 
correspond to the similarity solution pressure gradients at R = 1, 10, 30, 57. 

when we repeated the calculations for the shape h(z)  = 1, 0 Q x < 1, h(1) = 0 (see 
figure 11), both shapes were found to give the same critical Reynolds number of 
approximately 57.  

It should be apparent, by now, t'hat collision regions may arise in many other flows, 
but, unfortunately, it does not seem possible a t  present to predict apriori whether, in 
any given problem, a collision region will or will not form.? In the axisymmetric tube 
flow and the moving-wall boundary-layer flow, the non-existence of the similarity 
solutions made the need for a collision region almost self-evident, but the same was 
not true for the channel-flow case. From a practical, or computational, viewpoint, 
however, this is not an important matter. For we wish to propose that a mathematically 
and physically correct scheme for integrating the boundary-layer equations through 
a region of reverse flow is to formulate the initial condition in the manner described 
in this paper, so that, if a collision region is needed, one will simply emerge. 

The fact that the similarity solution no longer represents the flow near the origin 
of a finite channel when the Reynolds number exceeds 57, even though it appears 
perfectly reasonable for all values of R,  raises an interesting question regarding the 
applicability of similarity solutions to real flow situations. Of course, several cases have 
been reported in the literature where similarity solutions either failed to exist or 
developed singularities within some range of parameter space - cf. Barenblatt Rt 
Zel'dovich (1972), Moffatt & Duffy (1980). It has generally been taken for granted, 
however, that if a similarity solution was found to exist it could be assumed to provide 

t A related problem which may help resolve this question concerns the stability of the 
similarity solution t o  perturbations in r. A stability analysis can be carried out in much the 
same way as that for a conventional boundary layer, and it would be of interest to see whether 
the critical Reynolds numbers tletelminrd here coiild also be predicted by such an analysis. 
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a t  least a local representation of the flow. I n  fact, what our results suggest is that 
similarity solutions should be viewed with caution because they may have a limited 
range of applicability-i.e. they may provide a valid representation of a flow over 
some region of space (even if it is very small) only up to  a critical value of the relevant 
parameter of the problem but, once this critical value is exceeded, the similarity 
solution may no longer give even an approximate description of a real flow. 

This work was supported in part by a grant from the National Science Foundation, 
ENG 78-17613. 
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